

Snapshot Best Practices:
Developer Projects

Metadata Snapshots can be created on the desktop and connected to a live Salesforce org.
When you take a snapshot, metadata assets are downloaded from the org, and this information
is used for reporting and metadata deployment. But there is another way to work with
metadata assets. Developer Projects are not connected to an org, but rather to a local
folder on your computer. The files in this folder can be organized in a variety of popular
formats, including Salesforce DX. The files can be edited by hand and with developer tools like
Visual Studio Code. Developer Projects can also be dynamically linked to Git Repositories. Many
of the Snapshot reports can also be run on Developer Projects. This white paper explores how
Developer Projects work, and the best use cases for org management.

Creating Developer Projects

The Developer Project icon is next to the Metadata Snapshot icon in the Tool Palette. To create
a Developer Project simply drag the icon to the desktop. You can right-click and double-click
Developer Projects like a Metadata Snapshot. Metadata Snapshots are shown in blue, and
Developer Projects are shown in green.

If you right click the Developer Project, you will see the reports that can be run. Reports that
depend on data records will not be available because Developer Projects only contain metadata
information. You can also connect Developer Projects and Metadata Snapshots with arrows.
One of the most powerful capabilities for Developer Projects is that you can deploy metadata
between projects and live orgs. This is discussed in more detail below.

Editing Developer Projects

After creating a Developer Project, you can right-click or double-click the icon and bring up the
editing interface. The first screen allows you to select the local project folder. Click the “Browse
For Project” button and select a local folder on your computer. You will need full access right
for this folder. This is where the metadata files in the Developer Project will be stored. Each
Developer Project should have a unique local project folder in a stable location.

After that, you should select the file format for the Developer Project. The options at lower left
are Metadata API Format, Force.com IDE Format, and Salesforce DX Format. Use the Metadata
API Format if you are unsure about the best option. The Force.com IDE is a plugin for Eclipse
that has a special file format. To use the Salesforce DX option, you must have the Salesforce CLI
installed on your client computer. The Salesforce DX format is also called “source format” which
is sometimes required for DevOps projects. When using the Salesforce DX File Format, you
probably want to check the option at right for the “Single Unpackaged Folder.” This option
maps the “force-app” folder in Salesforce DX to the “unpackaged” folder that is used by the
Metadata API. When you switch between these three options, Snapshot will offer to remap
existing files to the desired format.

Each Developer Project can optionally be associated with a content repository like GitHub,
GitLab, BitBucket, or Azure DevOps. To do this, select the Remote Repository option at right.
We discuss setting up authentication for the remote repository below. To use remote
repositories, you will need the Git CLI installed on your client computer. Please contact
Metazoa Support if you are having trouble installing the Salesforce CLI or the Git CLI. When this
is set up you can easily move metadata assets back and forth to any Git repository in any of the
file formats. As you switch between file formats and remote repositories, you will see the tabs
at the top of the Developer Project interface change. The next section explores the options
available for the six different kinds of Developer Projects:

• Local Folder in Metadata API Format

• Local Folder in Force.com IDE Format

• Local Folder in Salesforce DX Format

• Remote Repository in Metadata API Format

• Remote Repository in Force.com IDE Format

• Remote Repository in Salesforce DX Format

Metadata API Format

The Metadata API File Format is the most common format for Developer Projects. Normally the
first level of folders will be named after packages, including a folder for unpackaged assets.
Inside each package folder will be the familiar Metadata API folders such as Classes, Objects,
etc. Inside those folders will be XML documents with Metadata API file extensions. This is the
raw format returned by the Metadata API Retrieve call. The format for the Force.com IDE is
similar, except that packages are stored in the “referenced packages” folder and unpackaged
assets are stored in the “src” folder.

The second tab for a local project in Metadata API File Format or Force.com IDE File Format has
an interface to help populate the project folder. There are options to download assets by
package name or to select them with a Job List file, a Package.xml file, or a Snapshot Limits file.
Choose one of the options and click the download assets button to populate the local folder.
Here are some additional notes on all the different ways to populate a local project with
metadata files:

• Packages: The download assets button brings up a list of packages with “unpackaged” at
the top of the list. Select a package to replace the current folder contents.

• Job List: The download assets button prompts for the selection of a Job List file. These
text files show the various assets selected in the create or delete job list, and they can
be exported from the Deploy Metadata interface.

• Package.xml: The download assets button prompts for the selection of a Package.xml
file. These XML files are part of any Metadata API Retrieve call.

• Snapshot Limits: The download assets button prompts for the selection of a Snapshot
Limits file. These files are created by the Take Snapshot dialog.

These options provide a quick way to populate your Developer Project with metadata assets.
However, you can also simply leave the project empty and use the metadata deployment
interface to add files to the project later. The files could come from a live Salesforce org or a
remote repository. The sections up ahead discuss taking snapshots and conducting metadata
deployments with Developer Projects.

Salesforce DX Format

Salesforce DX is a command line technology, and Snapshot can leverage all the capabilities
available in Salesforce DX through the CLI interface. This enables local folders in Salesforce DX
format to have some additional capabilities beyond a regular developer project. The second tab
provides tools to populate the Salesforce DX project with metadata. If you right click on the files
displayed at right, you can create source code for a variety of objects. You can also open the
local folder or launch the command prompt. Developers can use the command line to edit with
Salesforce DX or other desktop tools. Here are the source code assets that you can create from
the Snapshot interface:

• Apex Class

• Apex Trigger

• Lightning App

• Lightning Event

• Lightning Interface

• Lightning Component

• Visualforce Page

• Visualforce Component

The third tab allows you to push and pull source code from Scratch Orgs. Select an existing
Scratch Org or create a new one from the menu at top. The list at right will update with
information about local assets in the project folder that could be pushed to the Scratch Org,
and remote assets in the Scratch Org that could be pulled down.

Here is additional information on all the options:

• Select Scratch Org: Manage all your Salesforce DX Dev Hubs, Connected Orgs, and
Scratch Orgs. New Scratch Orgs can be created with this menu interface.

• Open Local Project: Launch the local project and edit with the file system or other tools.
These changes can be pushed to the Scratch Org with the Source Push option, below.

• Open Remote Browser: Launch the currently selected Scratch Org in a browser. Make
changes in the remote org for the Source Pull option, below.

• Ignore Metadata Types: Select metadata types that will be ignored during a Source
Push. This can help developers focus on certain types like Custom Objects or Apex
Classes and ignore other types that might not be easy to deploy, like Profiles.

• Refresh Status List: When local or remote changes have occurred, refresh the status list
at right. This will display the local and remote differences between the project and
Scratch Org. Sometimes conflicts occur, in which case the Force Overwrites option can
be used to resolve them on the local project or remote Scratch Org.

• Source Push: Deploy any local adds to the currently selected Scratch Org. The status list
will update after the metadata deployment.

• Source Pull: Retrieve any remote adds from the currently selected Scratch Org. The
status list will update after the metadata is retrieved and the local project is updated.

Content Repositories

Your local Salesforce DX or Metadata API project can be optionally connected to a content
repository like GitHub, GitLab, BitBucket, or Azure DevOps. In this case, the editing tools for the
local project are no longer displayed, because the source of the metadata files is now the
remote repository. The project folder is still used to store a local copy of the files. Developers
can switch the interface back and forth to work on the local project or the content repository as
needed. When the project is connected to a content repository, the files in the Developer
Project will be replaced when a snapshot is taken.

The connection to a content repository can either be SSH (Secure Shell) or HTTPS (Hypertext
Transfer Protocol Secure). Select either option and fill out the other fields below. To test the
connection, click the Clone Repository button. If the command works, the repository will be
cloned to the local folder. If there is an error, Snapshot will display the command line and the
error that was returned. You can try this on a local terminal and figure out why the command
failed. When the clone operation is successful the Developer Project is ready to go.

Taking Snapshots

Just because the local folder has been populated with metadata assets does not mean that
there is a snapshot available for the project. The take snapshot tab provides the interface to
create a snapshot for the project. This option will convert Salesforce DX projects and harvest
metadata files so that a snapshot can be created with the assets. This enables all the other
capabilities in Snapshot to work with your Developer Project just like a live Salesforce org.

After a snapshot, you can connect your project to any other project or Salesforce org with a
deployment arrow and compare assets, deploy metadata, manage the time series, and run
many of the reports. If you right click the project, you will see the metadata reports that are
available. Note that none of the data usability or security reports are listed, because a
Developer Project does not have actual data like a real Salesforce org.

If your Developer Project is connected to a content repository then be aware that taking a
snapshot will clone and/or pull the remote metadata asset files down to the local project
folder. The files in your Developer Project will be updated by the remote repository every time
a snapshot is taken.

Metadata Deployments

The deploy metadata interface works with Developer Projects as either the source or the
destination of the selected arrow. If a Developer Project is the source, then all the metadata
assets in the current snapshot of the Developer Project are available for deployment. If the
source project is a content repository, then a snapshot will update the project, and the latest
metadata assets from the repository can be deployed. This works for Developer Projects in
either Force.com IDE, Metadata API, or Salesforce DX format.

If a Developer Project is the destination of the deployment, then the files in the local project
folder will be created, updated, and deleted just like an actual Salesforce org. If the project is
connected to a content repository, then the remote files will be changed. This works for
Developer Projects in any file format. The options to roll back a deployment or perform a quick
deployment are disabled when the destination is a Developer Project.

The deploy metadata interface can be extremely helpful in straightening out Developer Projects
or Salesforce orgs that have fallen out of synchronization. You can use the powerful metadata
deployment interface to take snapshot of either the source or destination, compare the
differences, and make whatever changes are needed. The different types of metadata
deployments that are possible include:

Salesforce Org → Salesforce Org
Salesforce Org → Developer Project
Salesforce Org → Content Repository

Developer Project → Salesforce Org
Developer Project → Developer Project
Developer Project → Content Repository

Content Repository → Salesforce Org
Content Repository → Developer Project
Content Repository → Content Repository

Use Cases

This section discusses the best use cases for Developer Projects and org management. In many
situations, Developer Projects can provide a bridge between Salesforce developers and
administrators working on the org.

Metadata Editing

You can freely edit a Developer Project with an XML or text file editor. You can create new
metadata assets, delete old ones, and update files as needed. You need to know what you are
doing, and there is no guarantee that the changes will be valid metadata, but there is no limit to
the changes that are possible. When everything is ready, you can take a snapshot of the
Developer Project and deploy into a Sandbox or Production org. This is a very powerful way to
make the changes that are needed in special circumstances.

Remote Repositories

If your DevOps team is using remote repositories as the source of truth, then Developer
Projects let you move assets into the repository for backup and archive. You can create
branches and move any Metadata Snapshot into the cloud as needed. In the same manner, you
can download any repository, take snapshots, and run reports on the Developer Project. For
example, the Impact Analysis report can be run on Salesforce DX projects.

Visual Studio Code

Developers using Visual Studio Code on the desktop can integrate Snapshot support for
metadata deployment, metadata differences, and technical debt reporting simply by selecting
the desired folder of metadata assets in their Developer Project.

Smart Deploy

Many Snapshot reports will run on a Developer Project. For example, you can improve Apex
Code Quality on a Developer Project. In this situation, Smart Deploy will store all the code
improvements inside the Developer Project instead of a live org. The project can easily be saved
for the release management process at a later date.

Conclusion

This whitepaper has discussed how Developer Projects can help Salesforce administrators and
developers. The Snapshot product from Metazoa provides a best-of-breed solution for using
Developer Projects for org management.

support@metazoa.com

1-833-METAZOA
1-833-638-2962

https://www.metazoa.com

Twitter: @metazoa4sf

Facebook: https://www.facebook.com/metazoa4sf

LinkedIn: https://www.linkedin.com/company/18493594/

mailto:support@metazoa.com
https://www.metazoa.com/
https://www.facebook.com/metazoa4sf
https://www.linkedin.com/company/18493594/

